### FWRJ

# Potable Reuse Pilots and Demonstrations: A Review of Flow, Treatment, and Costs

Luke A. Mulford, Emilie Moore, Dave MacNevin, Jennifer Ribotti (née Roque)

### Significance of Demonstration Plant Capacity

The Hillsborough County Public Utilities Department is evaluating construction of an advanced water treatment demonstration facility; however, Florida's regulations do not provide a straightforward minimum flow capacity for a facility to be classified as a full-scale demonstration. In fact, neither California nor Texas regulations provide specific guidance on the minimum capacity for a full-scale demonstration. This article looks at over 30 potable reuse tests, observing each system's flow, treatment processes, and cost.

Florida has been a hot spot for testing of potable reuse, with more than a dozen Florida utilities (Table 1) having conducted pilots or demonstrations. While many of these projects focused on indirect potable reuse (IPR), utilities are increasingly viewing direct potable reuse (DPR) as a potentially viable alternative water supply. Florida utilities actively evaluating DPR include Hillsborough County, City of Daytona Beach, City of Altamonte Springs, and Jacksonville Electric Authority (JEA). Previous pilot studies focusing on IPR applications may have limited applicability for the more stringent requirements of DPR, since DPR facilities do not have the margin for process upsets that a large environmental buffer provides to IPR facilities. Therefore, a priority for DPR testing programs is to accumulate an extensive body of monitoring data that can be used as a basis of discussion with regulators for setting performance and treatment redundancy requirements for a future full-scale system.

The following factors should be considered when selecting the capacity of a demonstration plant:

- Produce water of equivalent quality to fullscale facilities
- Support development of full-scale design criteria and operational set points
- Support testing of multiple technologies to enable a price-competitive selection of full-scale equipment and consumables
- Provide access for tours by regulators, stake-

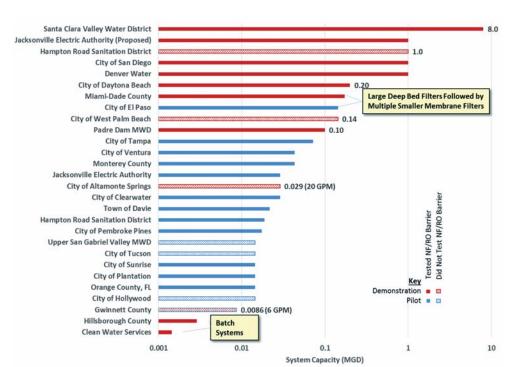



Figure 1. Capacities of Several Potable Reuse Pilot and Demonstration System in the United States

Luke A. Mulford, Ph.D., P.E., is water quality manager with Hillsborough County in Tampa. Emilie Moore, P.E., PMP, ENV SP, is senior project manager/Tampa area regional manager, and Dave MacNevin, Ph.D., P.E., is principal water reuse technologist with Tetra Tech in Tampa. Jennifer Ribotti (née Roque), P.E., is a project engineer at Tetra Tech in Orlando.

holders, and the publicAvailable site footprint

#### **Demonstration Plant Capacities**

#### Survey of Potable Reuse Test Programs

While the terms "pilot test" and "demonstration test" are commonly confused, full-scale equivalency appears to be the primary factor distinguishing demonstration programs from pilot programs. In general, potable reuse pilots tend to have smaller capacities, incur lower costs, and run for shorter durations, whereas potable reuse demonstrations tend to have larger capacities, incur higher costs, and run for longer durations. Pilot plants are more appropriate for lower-cost validation of alternative, innovative treatment trains, or narrowing down treatment alternatives for a follow-up demonstration. Demonstration plants are more appropriate for refinement of validated treated trains, operational training/response, space and visual impact for public tours, observing operation and maintenance costs, testing instrumentation and control, and providing flows in support of downstream testing (e.g., recharge wells, wetlands).

Absent regulatory guidance on capacity, the next best approach is to review the precedent from actual potable reuse test systems. Figure 1 shows the capacity of 28 potable reuse test systems (13 "demonstrations" and 15 "pilots") across the United States from the past 30 years on a logarithmic scale in mil gal per day (mgd). Table 1 summarizes the details of several recent notable test programs for potable reuse and Table 2 provides a graphical summary of the treatment

Continued from page 26

trains tested by location at pilot or demonstration scale.

A review of potable reuse test system capacities suggests that 0.1 mgd is a capacity where other utilities have decided to use the term "demonstration." Neither Florida or California, nor Texas, have regulations mandating a required capacity for a "full-scale" demonstration plant. One way to look for the difference in capacity for demonstration plants and pilot plants is to review the size of current and historical potable reuse test systems. While this is not an exhaustive list of every single potable reuse test system in the U.S., it's a large enough sample to be representative of industry views on demonstration capacities. More details about each of these test systems are provided in Table 1, including state, operational dates, treatment trains tested, and program costs.

Continued on page 28

#### Table 1. Notable Potable Reuse Pilot and Demonstration Programs in the United States by Year Started

| Sponsor                    | Program Name                                                                                                   | State | Туре             | Operational<br>Period                                                                    | Capacity<br>(each train)        | Treatment Trains Tested                                                                                                                                                                                                                                                                                                                                                                                                            | Pilot/Demo<br>Program<br>Cost (SM) | Notes                                                                                                                                                                                                                                                                                                                                          |
|----------------------------|----------------------------------------------------------------------------------------------------------------|-------|------------------|------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Denver Water               | Potable Reuse<br>Demonstration<br>Project                                                                      | со    | DPR<br>Demo      | 1985-1989,<br>5 Years<br>Alternatives<br>Testing<br>1990-1991<br>2 Years Demo<br>Testing | 1 MGD/<br>0.082 MGD<br>(57 GPM) | Preferred train tested during two-year period, two parts in sequence with<br>different capacity<br>First Part (1 MGD):Secondary effluent to lime, recarb, filtration, to<br>second part<br>Second Part (0.082 MGD): From first part to UV, GAC, RO (4"), air<br>stripping, O <sub>3</sub> , chloramination                                                                                                                         | \$10M<br>(~1990)                   | "Ten year" project received funding from USEPA<br>(20%).<br>\$4 million whole animal health effects testing<br>program, with no negative health effects<br>"The Demonstration of Direct Potable Water<br>Reuse: Lauer, 2015. "The Denver Project<br>Technical Report (1979-1993)" WateReuse.<br>https://watereuse.org/watereuse-research/7920/ |
| City of Tampa              | Water Resource<br>Recovery<br>Project                                                                          | FL    | IPR<br>Pilot     | Jan. 1987-<br>Jun 1989<br>(30 months)                                                    | 50 GPM<br>(0.072<br>MGD)        | Four (4) Parallel Alternatives<br>1. Preaeration, lime, recarbonation, filtration, and disinfection<br>2. (*)Preaeration, lime, recarbonation, filtration, <u>GAC</u> , & disinfection<br>3. Preaeration, lime, recarbonation, filtration, <u>RO (4")</u> , and disinfection<br>4. Preaeration, lime, recarbonation, filtration, <u>UF</u> , & disinfection                                                                        | N/A                                | Tampa Water Resource Recovery Project<br>"Supplemental Treatment Pilot Plant".<br>Disinfection process was chlorine until 6/88 and<br>ozone after 7/88".<br>(*)Treatment train (with ozone disinfection)<br>selected for follow on toxicological studies.                                                                                      |
| City of West<br>Palm Beach | Advanced<br>Wastewater<br>Treatment/<br>Constructed<br>Wetlands<br>Demonstration<br>Project                    | FL    | IPR<br>Demo      | Jul. 1996-<br>Jun. 1997<br>(12 months)                                                   | 100 GPM<br>(0.15<br>MGD)        | AWT Treatment (Actiflo (Ferric Sulfate Coagulation)>Deep Bed<br>Denitrifying Filters (Methanol)>Cl <sub>2</sub> (HLD). Discharging to Two (2)<br>Parallel Constructed Wetland Cells                                                                                                                                                                                                                                                | N/A                                | After demonstration, phosphorus removal was<br>moved to after DBFs to leave phosphorus in<br>water to support denitrifiers.                                                                                                                                                                                                                    |
| Orange County              | Advanced<br>Reclaimed<br>Water<br>Treatment Pilot<br>Study                                                     | FL    | IPR/DPR<br>Pilot | Mar. 2004-<br>May 2005<br>&<br>Jul. 2005-<br>Apr. 2006<br>(21 months)                    | ~10 GPM<br>(est.)               | UF+NF (4")+UVAOP+Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                   | N/A                                | 12 months at South WRF<br>BNR Tertiary Treatment w/sand filtration<br>9 months at East WRF<br>Advanced Secondary w/cloth filtration<br>Observed varying microconstituent removal with<br>loose NF, rejections varying primarily by<br>molecular weight                                                                                         |
| City of Sunrise            | Advanced<br>Wastewater<br>Treatment and<br>Reuse Pilot<br>Testing Program                                      | FL    | IPR<br>Pilot     | Apr. 2007-<br>Oct. 2007<br>(7 months))                                                   | 10 GPM                          | Three (3) Parallel Alternatives<br>1. BNR+MBR+ <u>RO(4")</u> , (Bench-scale items: disinfection/oxidation (UV/O <sub>3</sub> ))<br>2. BNR+MBR (Bench-scale items: disinfection/oxidation (UV/O <sub>3</sub> ))<br>3. BNR+MBR (Bench-scale items: chemical phosphorus removal (alum<br>and filtration), disinfection/oxidation (UV/O <sub>3</sub> ))                                                                                | N/A                                | Parallel testing of two RO units<br>Much testing limited to bench-scale<br>MWH 2008. "City of Sunrise, Florida, Southwest<br>WWTF AWT and Reuse Pilot Testing Program,<br>Final Report."<br>https://www.sfwmd.gov/sites/default/files/docum<br>ents/reuse.pilot_swwwtf.pdf                                                                     |
| City of Plantation         | Advanced<br>Wastewater<br>Treatment Pilot<br>Project                                                           | FL    | IPR<br>Pilot     | Sep. 2007-<br>Mar. 2008<br>(7 months)                                                    | 10 GPM                          | <ol> <li>Three (3) Alternatives</li> <li>Primary effluent, <u>MBR</u>, including BNR with methanol &amp; alum,<br/>RO (4"), &amp; UV disinfection</li> <li>Secondary nitrified effluent, deep bed denitrifying filter (with<br/>methanol), UF (with alum), RO (4"), UV disinfection.</li> <li>Secondary nitrified effluent, deep bed denitrifying filter (with<br/>methanol), UF (with alum), RO (4"), UV disinfection.</li> </ol> | \$0.3M<br>(2007)                   | Alt 1: 2.0 months<br>Alt 2: 2.5 months<br>Alt 3: 0.5 month<br>Hazen 2008. "City of Plantation, Final Report,<br>Advanced Wastewater Treatment Pilot Project."<br>https://www.sfwmd.gov/sites/default/files/docum<br>ents/reuse pilot_awt.pdf                                                                                                   |
| Miami-Dade<br>County       | Coastal<br>Wetlands<br>Rehydration<br>Demonstration<br>Pilot Project                                           | FL    | IPR<br>Pilot     | Feb. 2009-<br>Jul. 2009<br>(5 months)                                                    | 120 GPM<br>(Total)              | HLD with deep bed sand filtration to Cl <sub>2</sub> , MF, RO (4"), IX, UVAOP                                                                                                                                                                                                                                                                                                                                                      | \$1.7M<br>(2009)                   | Deep bed sand filtration included in pilot since<br>upgrades to South District WRF were incomplete<br>IX for nitrogen removal<br>Several vendors tested for each component : MF<br>(5), RO (5), UVAOP (2), IX resin (2).                                                                                                                       |
| Town of Davie              | Advanced<br>Wastewater<br>Treatment for<br>Aquifer<br>Recharge and<br>Indirect Potable<br>Reuse Pilot<br>Study | FL    | IPR<br>Pilot     | Jul. 2010-<br>Jan. 2011<br>(7 months)                                                    | 15 GPM                          | UF+RO (4")+UV (UV disinfection at pilot scale, UVAOP at bench-scale only)                                                                                                                                                                                                                                                                                                                                                          | N/A                                | AECOM 2011. "Town of Davie, Advanced<br>Wastewater Treatment for Aquifer Recharge and<br>Indirect Potable Reuse Pilot Study."<br>http://sefluc.org/images/downloads/Meetings_and<br>Events_Attachments/aecom_davie_final_pilot_r<br>eport_2011_sept.pdf                                                                                        |
| City of Pembroke<br>Pines  | Amilton                                                                                                        | FL    | IPR<br>Pilot     | Nov. 2010-<br>Jan. 2011<br>(3 months)                                                    | 12 GPM                          | MF+RO (4")+UVAOP+ remineralization (bench-scale)                                                                                                                                                                                                                                                                                                                                                                                   | N/A                                | N/A                                                                                                                                                                                                                                                                                                                                            |
| City of San<br>Diego       | Pure Water San<br>Diego Advanced<br>Water<br>Purification<br>Facility<br>Demonstration                         | CA    | IPR<br>Demo      | Aug. 2011-<br>Jul. 2012<br>(12 months)                                                   | 1 MGD                           | MF/UF+RO (8")+UVAOP                                                                                                                                                                                                                                                                                                                                                                                                                | \$6.6M <sup>i</sup><br>(2010)      | https://www.sandiego.gov/water/purewater/purew<br>atersd/reports                                                                                                                                                                                                                                                                               |
| City of<br>Hollywood       | Effluent<br>Recharge<br>Treatment Pilot<br>Study                                                               | FL    | IPR<br>Pilot     | Jan. 2013-<br>Nov. 2013<br>(11 months)                                                   | 10 GPM                          | Deep bed filters, IX (for TOC/NH4), O3, BAC, UV (NDMA destruction)                                                                                                                                                                                                                                                                                                                                                                 | \$3.0M<br>(2013)                   | Other trains were also tested.<br>Hazen 2014. "City of Hollywood, Florida,<br>Effluent Recharge Treatment Pilot Study: Final<br>Report."<br>http://www.hollywoodfl.org/DocumentCenter/Vie<br><u>w/4065</u>                                                                                                                                     |

# Plants Using Reverse Osmosis/Nanofiltration Membrane Treatment

Most potable reuse demonstration plant capacities are greater than or equal to about 0.1

mgd, or ~70 gal per min (gpm). The largest potable reuse demonstration facility (8 mgd) is run by the Santa Clara Valley Water District and is known as the Silicon Valley Advanced Water Purification Center (SVAWPC), which uses the advanced treated water for nonpotable purposes. The flow of 0.1 mgd is a significant threshold value for demonstration of reverse osmosis/nanofiltration (RO/NF)-based treatment trains, since 70 gpm is the approximate flow produced by a full-scale (8-in.-diameter ele-*Continued on page 30* 

#### Table 1. Notable Potable Reuse Pilot and Demonstration Programs in the United States by Year Started (continued)

| Sponsor                                                                                                                                   | Program Name                                               | State | Туре                                  | Operational<br>Period                  | Capacity<br>(each train)                                     | Treatment Trains Tested                                                                                                                                                                                                                                                                                                                                                                                               | Pilot/Demo<br>Program<br>Cost (SM) | Notes                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------|---------------------------------------|----------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Western Reserve<br>Land<br>Conservancy<br>(Moreland Hills,<br>OH) Tangent<br>Company                                                      | Tangent<br>Watercycle <sup>TM</sup>                        | ОН    | Onsite DPR<br>Demo to<br>Installation | 2013-2016                              | 250 GPD<br>(EST.)                                            | Preliminary Purification: Primary Treatment and Equalization,<br>Secondary Treatment (BNR) (including acetic acid and sodium<br>bicarbonate addition), tertiary filtration<br>Advanced Purification: Ultrafiltration, reverse osmosis (4"), granular<br>activated carbon, UV disinfection, mostly magnesium oxide or<br>occasionally sodium hydroxide, calcium hypochlorite, granular activated<br>carbon             | N/A                                | Commercial Pilot by the Tangent Company who<br>is marketing systems for onsite direct potable<br>reuse<br>4/2013-7/2014: Initial pilot, water sent to drain<br>field<br>08/2014-11/2015: Drinking and Cooking<br>Restricted<br>12/2015-5/2016: Unrestricted use<br>OH. S.B. 179 added "recycled" water as supply<br>for private water systems (04/2014). |
| City of<br>Clearwater                                                                                                                     | Groundwater<br>Replenishment                               | FL    | IPR<br>Pilot                          | Jul. 2013-<br>Jun 2014<br>(12 months)  | 20 GPM                                                       | Ultrafiltration, reverse osmosis (4"), UV advanced oxidation, membrane<br>degasification, direct lime injection, chemical quenching                                                                                                                                                                                                                                                                                   | \$2.7M<br>(2013)                   | Innovative testing of post-treatment technologies<br>for mitigating impacts in the aquifer<br>Pilot Funded with Matching Funds from<br>SWFWMD                                                                                                                                                                                                            |
| Upper San<br>Gabriel Valley<br>Municipal Water<br>District                                                                                | i.                                                         | CA    | IPR<br>Pilot                          | Aug. 2013-<br>Jul. 2014<br>(12 months) | ~10 GPM<br>(est.)                                            | Title 22 effluent, Ozone, biologically active carbon, soil aquifer treatment                                                                                                                                                                                                                                                                                                                                          | \$0.3M <sup>ii</sup><br>(2013)     | Filter Columns Simulating Soil Aquifer<br>Treatment of Chlorinated or Ozonated Reclaimed<br>Water. Ozonated water more effectively treated<br>for CECs by SAT.                                                                                                                                                                                           |
| Monterey County<br>(Monterey<br>Peninsula Water<br>Management<br>District &<br>Monterey<br>Regional Water<br>Pollution Control<br>Agency) | Pure Water<br>Monterey                                     | CA    | IPR<br>Pilot                          | Oct. 2013-<br>Jul. 2014<br>(10 months) | 30 GPM                                                       | Ozone, microfiltration, reverse osmosis (4"), UV advanced oxidation<br>(bench-testing only)                                                                                                                                                                                                                                                                                                                           | N/A                                | Treating secondary effluent<br>Preozonation improved MF run times by a factor<br>of 4 to 8 by reducing membrane fouling, allowing<br>for a higher MF design flux.<br>http://purewatermonterey.org/reports-<br>docs/engineering-report/                                                                                                                   |
| Santa Clara<br>Valley Water<br>District                                                                                                   | Silicon Valley<br>Advanced Water<br>Purification<br>Center | CA    | IPR<br>Demo                           | Mar. 2014-<br>Ongoing                  | 8 MGD                                                        | Microfiltration, reverse osmosis (8"), UV disinfection                                                                                                                                                                                                                                                                                                                                                                | \$68M<br>(2014)                    | The purified water produced by the SVAWPC is<br>not currently used for potable (i.e., drinking)<br>purposes, but instead is blended with tertiary-<br>treated recycled water and used for a variety of<br>non-potable purposes such as irrigation, cooling<br>towers, and industrial applications.                                                       |
| City of Tucson                                                                                                                            | Potable Reuse<br>Pilot                                     | AZ    | IPR<br>Pilot                          | Oct. 2014-<br>Apr. 2015<br>(6 months)  | 10 GPM                                                       | Soil aquifer treatment, sidestream nanofiltration (2.5"), ozone,<br>biologically activated carbon                                                                                                                                                                                                                                                                                                                     | N/A                                | Treating secondary effluent<br>Substitutes soil aquifer treatment for MF/UF<br>Sidestream NF for lower cost salinity removal<br>NF has lower feed pressure, higher recovery,<br>concentrate more usable for irrigation                                                                                                                                   |
| Padre Dam<br>Municipal Water<br>District                                                                                                  | Advanced Water<br>Purification East<br>County              |       | IPR<br>Demo                           | Apr. 2015-<br>Feb. 2016<br>(11 months) | 0.1 MGD                                                      | Part 1 (0.1 MGD, 70 GPM):Free chlorine contact, membrane filtration,<br>RO (4")<br>Part 2 (10 GPM): UVAOP                                                                                                                                                                                                                                                                                                             | \$5M <sup>iii</sup><br>(2015)      | "Padre Dam Advanced Water Purification<br>Center"<br>"Advanced Water Purification Demonstration<br>Project"<br>Treated secondary effluent. Evaluating high RO<br>recovery, 92%-95% through conventional RO and<br>closed circuit desalination (CCD) RO.                                                                                                  |
| City of<br>El Paso                                                                                                                        | Advanced Water<br>Purification<br>Facility Pilot<br>Test   | тх    | DPR<br>Pilot                          | Jul. 2015-<br>Apr. 2016<br>(9 months)  | 100 GPM<br>Denitrifying<br>filters<br>12 GPM per<br>RO train | Secondary effluent from the Bustamante WRF<br>Phase I: <u>Denitrifving filters</u> +MF/UF + NF/RO (4") + UVAOP + GAC<br>(H <sub>2</sub> O <sub>2</sub> quenching)+ Cl <sub>2</sub><br>Phase II: MF/UF + NF/RO (4") + UVAOP + GAC (H <sub>2</sub> O <sub>2</sub><br>quenching)+Cl <sub>2</sub><br>Phase III: <u>Ozone</u> + MF/UF + NF/RO (4") + UVAOP + GAC (H <sub>2</sub> O <sub>2</sub> quenching)+Cl <sub>2</sub> | \$4M<br>(2015)                     | DPR Direct to Distribution System Planned for<br>Full-Scale Implementation<br>Two parallel membrane filtration units<br>(microfiltration and ultrafiltration)<br>Three parallel RO units with 12 gpm production<br>capacity each                                                                                                                         |
| City of San<br>Buenaventura<br>(Ventura)                                                                                                  | Ventura Water<br>Pure                                      | CA    | DPR<br>Demo                           | Jul. 2015-<br>Apr. 2016<br>(9 months)  | 30 GPM                                                       | Tertiary effluent from the Ventura WRF<br>Pasteurization, ultrafiltration, reverse osmosis (4"), UV advanced<br>oxidation                                                                                                                                                                                                                                                                                             | N/A                                | Pasteurization showed promise to reduce UF<br>biofouling<br>Brief demonstration of an electrode based UV<br>advanced oxidation process (no peroxide) in<br>addition to conventional UV advanced oxidation<br>with peroxide                                                                                                                               |
| Clean Water<br>Services                                                                                                                   | NEWater Brew                                               | OR    | DPR<br>Demo                           | Oct. 2015                              | 1 GPM<br>Batch                                               | Constructed Wetland System Receiving Raw Wastewater<br>Ultrafiltration, reverse osmosis (4"), UV advanced oxidation, granular<br>activated carbon                                                                                                                                                                                                                                                                     | N/A                                | Water from the Forest Grove WRF was purified<br>and used for a beer brewing contest with approval<br>from the Oregon Department of Environmental<br>Quality.                                                                                                                                                                                             |
| Gwinnett County                                                                                                                           | Direct Potable<br>Reuse<br>Demonstration                   | GA    | DPR<br>Demo                           | Mar. 2016-<br>Feb. 2017<br>(12 months) | 6 GPM                                                        | Effluent from the F. Wayne Hill WRC<br>Ozone, ferric coagulation, biologically active carbon, chlorine<br>disinfection                                                                                                                                                                                                                                                                                                | \$1.0M <sup>iv</sup><br>(2016)     | Baseline: 100% Lake Lanier Water (2 mos.)<br>DPR Blending: 10%, 50%, 100% FWH effluent<br>(6 mos.)<br>Biofiltration Optimization: Test P and H <sub>2</sub> O <sub>2</sub> addn.<br>(2 mos.)<br>Robustness: Performance in lake turnover (2<br>mos.)                                                                                                     |
| Hillsborough<br>County                                                                                                                    | Direct Potable<br>Reuse<br>Demonstration                   | FL    | DPR<br>Demo                           | Jul. 2016                              | 2 GPM<br>Batch                                               | Denitrified tertiary effluent from the Falkenburg Water Reclamation<br>Facility<br>Ultrafiltration, reverse osmosis (4"), UV advanced oxidation                                                                                                                                                                                                                                                                       | ~\$0.2M<br>(est.) (2016)           | First DPR Pilot in Florida Cleared by FDEP to<br>Produce Water for Human Consumption<br>Multiple Processes Operated in Batch Mode<br>UF 6 GPM, RO 2 GPM, UVAOP 8 GPM.<br>Produced water for the 2016<br>WateReuse Symposium                                                                                                                              |

ment) two-stage RO/NF membrane system. Both Miami-Dade County and City of El Paso had pilot systems with multiple parallel 4-in.diameter RO/NF skids; however, both systems had large deep bed denitrifying filters at the front of the train, which led to the system capacities being above 0.1 mgd.

Nevertheless, among all 26 of the potable reuse tests conducted using RO/NF membranes, the majority of systems (19, or 73 percent) used 4-in.-diameter membranes; three (12 percent) used 2.5-in.-diameter membranes; and four (15 percent) used 8-in.-diameter membranes. Use of smaller-diameter RO/NF membranes is usually preferred to reduce program costs, reduce system footprint, and simplify operations. Since the water quality performance of 4-in.-diameter membranes is well established, as comparable to 8-in. membranes<sup>ix</sup>, many utilities choose to use 4-in. membranes and invest the cost savings into enhanced water quality sampling, online instrumentation/monitoring, and other program priorities.

#### Plants Using Carbon-Based Treatment

"Large" (≥0.1 mgd) demonstration systems are not limited to those with RO/NF membrane treatment. Hampton Roads Sanitation District's (HRSD) SWIFT (Sustainable Water Initiative for Tomorrow) demonstration system (1 mgd) is a nonmembrane treatment train, with alum coagulation, ozone, biologically active filtration (BAF), granular activated carbon (GAC), ultraviolet (UV) disinfection, stabilization, and a test recharge well. The HRSD selected nonmembrane treatment for its demonstration plant after piloting parallel membrane and carbonbased treatment trains. The City of West Palm Beach's demonstration program (0.14 mgd/100 gpm) included high-rate ferric coagulation, deep bed denitrifying filters, and chlorination before discharge to two parallel constructed wetland cells. Below 0.1 mgd, the use of the word "demonstration" may be less linked to fullscale equivalence of equipment, but rather, more representative of a desire to distinguish Continued on page 32

#### Table 1. Notable Potable Reuse Pilot and Demonstration Programs in the United States by Year Started (continued)

| Sponsor                                                     | Program Name                                                                                  | State | Туре         | Operational<br>Period                   | Capacity<br>(each train)                                | Treatment Trains Tested                                                                                                                                                                                     | Pilot/Demo<br>Program<br>Cost (SM)          | Notes                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------|--------------|-----------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hampton Roads<br>Sanitation<br>District                     | Sustainable<br>Water Initiative<br>for Tomorrow<br>(SWIFT)                                    | VA    | IPR<br>Pilot | Jul. 2016-<br>May 2017<br>(11 months)   | 4 GPM<br>Carbon<br>Train<br>13 GPM<br>Membrane<br>Train | Denitrified secondary effluent from the York River Treatment Plant<br>Carbon Based: Alum + Ozone (Peroxide) + BAC/GAC<br>Membrane Based: MF+RO (4")+UVAOP                                                   | \$0.5M <sup>v</sup><br>(2015)               | Carbon train was selected for a follow on demonstration study.                                                                                                                                                                                                                                                                                                                               |
| Hampton Roads<br>Sanitation<br>District                     | Sustainable<br>Water Initiative<br>for Tomorrow<br>(SWIFT)                                    | VA    | IPR<br>Demo  | 2017-2019<br>(24 months)                | 1 MGD                                                   | $\label{eq:ansemond} \begin{array}{l} Nansemond \ Treatment \ Plan \ Secondary \ effluent \ to \\ Alum+ \ O_3 \ (peroxide) + BAF+ \ GAC + UV+ \ Cl_2 + Stabilization + Test \\ Recharge \ Well \end{array}$ | \$27M<br>Capital<br>(2017)                  | "Sustainable Water Phase 3 – Demonstration<br>Facility"<br>27,000 SF facility                                                                                                                                                                                                                                                                                                                |
| City of<br>Altamonte<br>Springs                             | pureALTA                                                                                      | FL    | DPR<br>Demo  | 2016-2017<br>(12 months)                | 20 GPM                                                  | Ozone/biologically active filtration, chloramination, ultrafiltration, granular activated carbon, UV advanced oxidation                                                                                     | \$1.0M <sup>vi</sup><br>(2016)              | Fifty percent of pilot costs provided by the St.<br>Johns River Water Management District<br>(SJRWMD) under its Rural Economic<br>Development Initiative (REDI) Community &<br>Innovative Cost-Share Program                                                                                                                                                                                 |
| Jacksonville<br>Electric<br>Authority (JEA)                 | Water<br>Purification<br>Treatment<br>(WPT)<br>Evaluation and<br>Pilot Testing                | FL    | Pilot        | 2017-2018<br>(5 months<br>& 5 months)   | 20 GPM<br>each (0.029<br>MGD)                           | Microfiltration, reverse osmosis (4"), UV advanced oxidation<br>and<br>Ozone/biologically active filtration, UV disinfection                                                                                | \$2M (est.)<br>(2017)                       | Phase 1 Pilot, Two trains each one tested for 5<br>months on two WRFs each receiving different<br>sources (predominantly domestic vs. significantly<br>industrial)                                                                                                                                                                                                                           |
|                                                             | -                                                                                             |       | Demo         | (Proposed)                              | 0.5-1.0<br>MGD                                          | TBD from pilot results                                                                                                                                                                                      | \$8M (est.)<br>(2017)                       | Phase 2 Demonstration                                                                                                                                                                                                                                                                                                                                                                        |
| Arizona<br>(Multiple<br>Entities)                           | Arizona Pure<br>Water Brew                                                                    | AZ    | DPR Demo     | 2017                                    | 4 GPM                                                   | UF+RO (4")(+UV advanced oxidation, GAC, Free Chlorine                                                                                                                                                       | N/A                                         |                                                                                                                                                                                                                                                                                                                                                                                              |
| San Francisco<br>Public Utilities<br>Commission<br>(SFPUC)  | PureWaterSF<br>Decentralized<br>Purified Water<br>Research Project                            | CA    | Pilot        | 2017<br>(8 months)                      | 1 GPM                                                   | Microfiltration, reverse osmosis (2.5"), UV hypochlorite advanced oxidation                                                                                                                                 | \$0.63M<br>(2017)                           | "Building-Scale Treatment for Direct Potable<br>Water Reuse & Intelligent Control for Real Time<br>Performance Monitoring"<br>Building Level Potable Reuse                                                                                                                                                                                                                                   |
| City of Daytona<br>Beach                                    | Direct Potable<br>Reuse<br>Demonstration<br>Test System                                       | FL    | DPR Demo     | Oct. 2018-<br>Sept. 2020<br>(24 months) | 0.2 MGD<br>(139 GPM)                                    | Ultrafiltration, reverse osmosis (8"), UV advanced oxidation                                                                                                                                                | \$3.5M<br>(2017)                            | Demonstration Facility Under Operations.<br>Side by side testing of UF (2) and RO (2).<br>Received \$1M funds from the SJRWMD                                                                                                                                                                                                                                                                |
| Texas A&M<br>University<br>AgriLife<br>Extension            | Direct Potable<br>Reuse Research<br>&<br>Demonstration<br>System                              | тх    | DPR Demo     | (Proposed)<br>2018<br>(12 months)       | 0.34 GPM                                                | Activated carbon, ozonation, chlorination, RO (2.5"), UV disinfection                                                                                                                                       | \$N/A<br>(Bidding)                          | Sourced from raw domestic wastewater or<br>secondary effluent from an existing MBR, with a<br>BOD and TSS<10 mg/L, TN<30 mg/L, and<br>TP<10 mg/L. <sup>vii</sup><br>To be installed at University's onsite wastewater<br>training center at its RELLIS Campus in Bryan,                                                                                                                      |
|                                                             |                                                                                               |       |              |                                         |                                                         |                                                                                                                                                                                                             |                                             | TX.<br>Includes membrane bioreactor.                                                                                                                                                                                                                                                                                                                                                         |
| Metropolitan<br>Water District of<br>Southern<br>California | Regional<br>Recycled Water<br>Advanced<br>Purification<br>Center<br>Demonstration<br>Facility | CA    | IPR Demo     | Begins Late<br>2018<br>(12 months)      | 0.5 MGD<br>(397 GPM)                                    | "Regional Recycled Water Advanced Purification Center"<br>Secondary effluent from the JWPCP to<br>Membrane bioreactor, reverse osmosis (8"), UV advanced oxidation,<br>stabilization                        | \$17M <sup>viii</sup><br>(Const.)<br>(2018) | Water quality goals for nitrogen.<br>Partnership between Metropolitan Water District<br>of Southern California and Sanitation Districts of<br>Los Angeles County. Groundwater recharge<br>Proposed Full-Scale Facility would produce up to<br>150 MGD. Estimated to Cost \$2.7B to build,<br>\$129 million annually to operate, producing water<br>at a cost of \$4.91/kgal <sup>vin</sup> . |

http://dockets.sandiego.gov/sirepub/cache/2/ly5prp0jqxicc2lunqnycwu5/22163708272017063206241.PDE. http://www.mwdh2o.com/FAF%20PDFs/6\_RW\_USGVMWD%20Final%20Report.pdf (Page 17). http://www.gwinnettcounty.com/static/upload/bac/52/20150804/ap\_2015.08.04.Work.Session.Agenda.Package.pdf http://www.hrsd.com/pdf/Commission%20Minutes/2015/08-25-15\_Final\_Commission\_Minutes.pdf (Page 155 of 229). http://files.altamonte.org/PW/AFIRST/Presentation/2015-06-19A-FIRST%20FSA%20Final.pdf (Page 35). Water Desalination Report. 2017. "University Seeks DPR Demo Plant." Vol. 53. Num. 31.

<sup>ii</sup> http://www.mwdh2o.com/PDF About Your Water/Regional Recyled Water Supply Program.pdf.

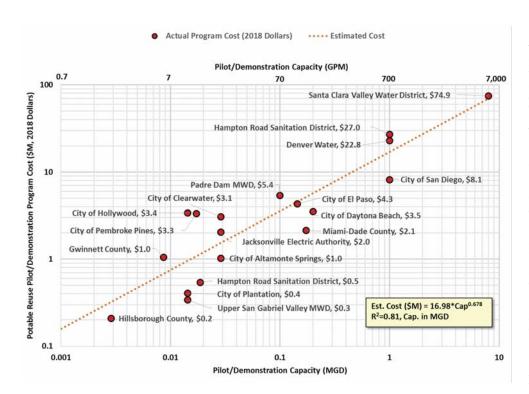



Figure 2. Cost (in millions) Versus Capacity (mgd) of Several Potable Reuse Pilot/Demonstration Program



More than a dozen Florida utilities have evaluated potable reuse through operating short-term, offline, demonstration/pilot facilities. The most recent such facility is the City of Daytona Beach's 200,000 gal-per-day demonstration test system (pictured), which is the largest such demonstration facility in the state and utilizes full-scale equipment. (photo: Dave MacNevin)

"direct" potable reuse pilot systems (i.e., City of Altamonte Springs [20 gpm], Gwinnett County DPR [6 gpm], Hillsborough County batch system, and Clean Water Services batch system) from the multitude of IPR pilot studies that have been performed. (Note, both Altamonte Springs and Gwinnett County are non-RObased test systems based on ozone and biologically active carbon, which can achieve full-scale equivalency at these lower flows.)

# Plants Using Multiple Equipment Capacities and Multiple Phases

Several potable reuse test systems used a mixture of equipment sizes (typically large units, followed by smaller units), instead of a single size for all equipment in the treatment train. Denver Water's direct potable water reuse demonstration (1990-1991) consisted of a 1mgd lime clarification, recarbonation, and filtration train, coupled with a smaller 57-gpm (0.082-mgd) UV, GAC, RO, air stripping, ozone, and chloramination train. Padre Dam Municipal Water District's demonstration facility consisted of a 0.1-mgd (70-gpm) free chlorine, membrane filtration, and RO train, followed by a 10-gpm UV advanced oxidation process (AOP). Other test schemes included multiple and similar parallel treatment units (e.g., Miami-Dade, City of Daytona Beach, City of Hollywood, City of Sunrise, City of Tampa), or phased testing of various treatment trains (City of El Paso, City of Plantation, Gwinnett County).

# Pilot/Demonstration Program Costs

Program costs were available for several potable reuse test programs, as detailed in Table 1. Program costs (in 2018 dollars<sup>x</sup>) are plotted against pilot/demonstration capacity in Figure 2. Both cost and capacity ranged over several orders of magnitude; therefore, it was necessary to plot the data on a log-log scale for better visibility.

Multiple regression analyses were carried out to identify the significance of plant capacity and test duration on potable reuse test program cost. Simple linear regression yielded a high coefficient of determination ( $\mathbb{R}^2$ ), but was rejected since it tended to overestimate costs for smaller capacity systems. A power model (Figure 2) provided a better estimate of cost over the range of pilot/demonstration capacities. The exponent of the power model (0.678), is consistent with other water treatment models, where the exponent for cost with respect to flow commonly ranges between 0.65-0.75. While actual program costs varied significantly at any given capacity, this model can still provide helpful perspective for preliminary planning of demonstration plant capacities.

Assuming a demonstration facility capacity somewhere in the range of 0.1 to 1 mgd, associated demonstration program costs may be expected to range from approximately \$2 million to \$27 million; however, at any given capacity, the actual program costs can be expected to vary as much as threefold<sup>si</sup> depending on program specifics.

#### References

- http://dockets.sandiego.gov/sirepub/cache/ 2/ly5prp0jqxicc2lunqnycwu5/2216370827 20170 63206241.PDF.
- <sup>ii</sup> http://www.mwdh2o.com/FAF%20PDFs/6\_ RW\_USGVMWD%20Final%20Report.pdf (Page 17).
- iii http://www.padredam.org/DocumentCenter/View/707.
- iv https://www.gwinnettcounty.com/static/upload/bac/52/20150804/ap\_2015.08.04.Work.S ession.Agenda.Package.pdf.
- http://www.hrsd.com/pdf/Commission%20 Minutes/2015/08-25-15\_Final\_Commission\_Minutes.pdf (Page 155 of 229).
- vi http://files.altamonte.org/PW/AFIRST/Presentation/2015-06-19A-FIRST%20FSA%20 Final.pdf (Page 35).
- vii Water Desalination Report. 2017. "University Seeks DPR Demo Plant." Vol. 53. Num. 31.
- viii http://www.mwdh2o.com/PDF\_About\_Your \_Water/Regional\_Recyled\_Water\_Supply\_Pro gram.pdf.
- <sup>ix</sup> Mulford, L. A., et al., 1999. "NF performance at full and pilot scale." Journal American Water Works Association ,91.6 (1999): 64. https://www.awwa.org/publications/journalawwa/abstract/articleid/14063.aspx.
- <sup>x</sup> Using a value of 10807 for the Engineering News Record Construction Cost Index (ENR CCI) projected via linear regression to June 2018.
- xi Near 0.1 mgd, program costs varied about threefold, ranging from a lower-cost system (Miami-Dade, \$2.1 million) to a higher-cost system (Padre Dam Municipal Water District, \$5.7 million). The Miami-Dade system had a larger denitrification filter, followed by several smaller-capacity pilot systems. Near 1 mgd, program costs also varied about threefold, ranging from a lower-cost system (City of San Diego, \$8.1 million) to a higher-cost system (Hampton Roads Sanitation District, \$27 million). The HRSD system was designed with a more-expensive, permanent building designed for showcasing the project to the public, whereas the San Diego system utilized a lower-cost shed covering the demonstration system. Δ